Rare earths (RE) have been used to improve the high temperature oxidation resistance of low alloy steel containing elements like Cr, Al, V and Mo. Further, the RE can be added either to the alloy or by applying as an oxide coating to the alloy surface. In this study the high temperature oxidation resistance of rare earth (RE) oxide coated 1Cr-0.3Mo-0.25V alloy was determined. This paper presents the influence of surface additions of nano-crystalline oxides CeO2 on the isothermal oxidation behavior of 1Cr-0.3Mo-0.25V alloys at temperatures ranging from 600 °C to 900 °C. The oxidation rate of RE oxide coated1Cr-0.3Mo-0.25V was significantly lower than that of the uncoated alloy. The improvements in oxidation resistance are the reduced oxidation rates and the increased oxide scale adhesion. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and electron probe micro analyzer (EPMA) were employed for these analyses. The scale formed in the presence of RE oxides was very thin, fine grained and adherent.

User Rating: 5 / 5

Star ActiveStar ActiveStar ActiveStar ActiveStar Active