Chips of various morphologies formed during surface grinding of cast AISI 409 stainless steel slabs have been examined in light microscope and SEM. Dynamic nucleation of fresh grains occur in the work hardened layer of chips of various morphologies, but growth of these grains on the chip surface is highly non-uniform. Iron rich oxide nodules also grow on the chip surface.

Enameling steel has important applications in our daily life as in domestic appliances and industry (chemical, agro-food, storage tanks, heat exchangers..etc.) due to its outstanding properties resulting from combined advantages of steel and enamel. The combination of such steel and enamel provides durability and glossy appearance that withstand chemical corrosion, abrasion, thermal shocks and fire. The durability and quality of enameling process depends to a great extent on the quality of substrate (enamel steel). To ensure an acceptable quality of such steel to be enameled, care must be taken during steelmaking and refining such grade to obtain low carbon levels (0.03-0.05%max) and minimum count of inclusions. The morphology of inclusions is adjusted by Ca-cored wire feed technology however melt stirring using Argon is very useful to minimize inclusions and gas contents. Vacuum decarburization of steel melt to ensure low carbon levels prevents the black specks during firing of such steel sheets; however micro-alloying with 0.2-0.5% Ti or V stabilizes the rest of carbon and creates default sites for hydrogen after cold rolling to prevent fish scale phenomena after enameling. Assessment of inclusion counts and their morphology as well as distribution of carbides are carried out using scanning field electron microscopy and ASTM standard.

Continuous casting, initially introduced in 1840, is an attractive method in mass producing semi-finished metal shapes (slabs, blooms, and billets) from molten metal. More than 50% of current world’s steel production is produced by continuous casting. Today, annually 750 million tons of steel in the steelmaking operation, 20 million tons of aluminum and many tons of other alloys are directly cast from molten metal by continuously casting method [1]. This paper presents a short review over the processes in consciously cast steel.

The microstructure of steel is responsible for the macro-behavior of steel or in other words steel’s material properties. Surface microcracks and internal flaws can be introduced to steel microstructure during solidification. The soundness of the steel is altered by formation of flaws and microcracks in casting production line. Additive elements to molten steel and chemical element and alloys in the iron slag may produce indigenous and exogenous inclusions in the microstructure. The presence of the inclusions in the microstructure changes the cleanliness of the steel and affects the material properties of the steel products. This paper is a review of literatures on the sources of formation of inclusions and flaws in the as-cast steel and the effect of these defects on the microstructure properties.

The influence of solution annealing heat treatment on the microstructure and hardness of Hadfield steel containing up to 3.16% chromium and 0.15% nitrogen was investigated.
Furthermore, the effects of chromium additions on the hardness and microstructure of austenitic manganese steels in the as-cast and heat-treated conditions have been studied. The true stress-true strain response of nitrogen alloyed austenitic manganese steel with chromium additions in the as-cast and heat treated conditions under compression loading was also studied. The microstructural observations on the as-cast and heat-treated steels with chromium additions revealed the stability of austenite phase in the as-cast state deformation with precipitation of carbides and carbonitrides on the grain boundaries. These precipitates increase by increasing true strain and chromium content.
2² factorial design was used to investigate the contribution effect of chromium additions and true strain on hardness of austentic manganese steel as cast and after heat treatment. The contribution of both chromium additions up to 3.16%, true strain rate up to 0.4, and the interaction combination effect of them were determined of cast and heat treated austenitic manganese steel. The regression models were built up to identify the hardness as function in chromium additions and true strain rate of both cast and heat treated austenitic manganese steel.

news in steel

Book review: "Fit for hot and cold rolling of strips"

Michael Degner & Heinz Palkowski: Fit for hot and cold rolling of strips - Basics and Exercises (2016), Publisher: IMP InterMediaPartners GmbH, Wuppertal, ISBN: 978-3-9817904-1-2

The book „Basics“ contains a structured description of the main topics in hot and cold rolling of metallic strips.

Case Berlin City Palace fastening Europe's largest facade

Originally constructed in 1443, the Berlin City Palace holds a special place both in the hearts of the German people and their capital. Located directly across from the Berlin Cathedral in the city’s central district of Mitte, the palace with its magnificent baroque façade stood for centuries as a symbol of the city’s historical importance.

Completely automatic, software-supported profile measurement of glowing wires, bar steel and tubes

Using the RDMS profile measurement system from LAP, steel industry plants can measure the contours of glowing wires, bar steel and tubes in the production process completely automatically. Software warns in real-time about imminent tolerance infringements even before the product quality suffers.

ANDRITZ MeWa to supply new granulators to Nothnagel Wertstoffverarbeitung, Germany

ANDRITZ MeWa, part of international technology Group ANDRITZ, has received an order from Nothnagel Wertstoffverarbeitung GmbH with headquarters in Hartenstein, Germany, to supply three Universal Granulators UG 1600 S. The equipment will be used for post-shredding of composite materials and replaces the shredding technology used to date.