Chips of various morphologies formed during surface grinding of cast AISI 409 stainless steel slabs have been examined in light microscope and SEM. Dynamic nucleation of fresh grains occur in the work hardened layer of chips of various morphologies, but growth of these grains on the chip surface is highly non-uniform. Iron rich oxide nodules also grow on the chip surface.

Only registered and logged in users can download this file.

Enameling steel has important applications in our daily life as in domestic appliances and industry (chemical, agro-food, storage tanks, heat exchangers..etc.) due to its outstanding properties resulting from combined advantages of steel and enamel. The combination of such steel and enamel provides durability and glossy appearance that withstand chemical corrosion, abrasion, thermal shocks and fire. The durability and quality of enameling process depends to a great extent on the quality of substrate (enamel steel). To ensure an acceptable quality of such steel to be enameled, care must be taken during steelmaking and refining such grade to obtain low carbon levels (0.03-0.05%max) and minimum count of inclusions. The morphology of inclusions is adjusted by Ca-cored wire feed technology however melt stirring using Argon is very useful to minimize inclusions and gas contents. Vacuum decarburization of steel melt to ensure low carbon levels prevents the black specks during firing of such steel sheets; however micro-alloying with 0.2-0.5% Ti or V stabilizes the rest of carbon and creates default sites for hydrogen after cold rolling to prevent fish scale phenomena after enameling. Assessment of inclusion counts and their morphology as well as distribution of carbides are carried out using scanning field electron microscopy and ASTM standard.

Only registered and logged in users can download this file.

Continuous casting, initially introduced in 1840, is an attractive method in mass producing semi-finished metal shapes (slabs, blooms, and billets) from molten metal. More than 50% of current world’s steel production is produced by continuous casting. Today, annually 750 million tons of steel in the steelmaking operation, 20 million tons of aluminum and many tons of other alloys are directly cast from molten metal by continuously casting method [1]. This paper presents a short review over the processes in consciously cast steel.

Only registered and logged in users can download this file.

The microstructure of steel is responsible for the macro-behavior of steel or in other words steel’s material properties. Surface microcracks and internal flaws can be introduced to steel microstructure during solidification. The soundness of the steel is altered by formation of flaws and microcracks in casting production line. Additive elements to molten steel and chemical element and alloys in the iron slag may produce indigenous and exogenous inclusions in the microstructure. The presence of the inclusions in the microstructure changes the cleanliness of the steel and affects the material properties of the steel products. This paper is a review of literatures on the sources of formation of inclusions and flaws in the as-cast steel and the effect of these defects on the microstructure properties.

Only registered and logged in users can download this file.

The influence of solution annealing heat treatment on the microstructure and hardness of Hadfield steel containing up to 3.16% chromium and 0.15% nitrogen was investigated.
Furthermore, the effects of chromium additions on the hardness and microstructure of austenitic manganese steels in the as-cast and heat-treated conditions have been studied. The true stress-true strain response of nitrogen alloyed austenitic manganese steel with chromium additions in the as-cast and heat treated conditions under compression loading was also studied. The microstructural observations on the as-cast and heat-treated steels with chromium additions revealed the stability of austenite phase in the as-cast state deformation with precipitation of carbides and carbonitrides on the grain boundaries. These precipitates increase by increasing true strain and chromium content.
2² factorial design was used to investigate the contribution effect of chromium additions and true strain on hardness of austentic manganese steel as cast and after heat treatment. The contribution of both chromium additions up to 3.16%, true strain rate up to 0.4, and the interaction combination effect of them were determined of cast and heat treated austenitic manganese steel. The regression models were built up to identify the hardness as function in chromium additions and true strain rate of both cast and heat treated austenitic manganese steel.

Only registered and logged in users can download this file.

news in steel

Per Hillström appointed new Head of Investor Relations at SSAB

Per Hillström is to be the new head of Investor Relations at SSAB. He will take up the position during the fourth quarter of this year and report to Taina Kyllönen, EVP Corporate Identity and Group Communications.

STIS-2017: 3rd International Conference on Science and Technology of Ironmaking & Steelmaking

The 3rd International Conference on Science and Technology of Ironmaking and Steelmaking (STIS-2017) is planned to be held at the Indian Institute of Technology, Kanpur (INDIA) from December 11th to 13th, 2017. STIS series of conferences, held once in four years, is an Indian initiative, the major objective of which is to create and sustain interest in iron and steelmaking.

Steel service center in El Puig, Spain, now wholly owned by thyssenkrupp

In July 2016 thyssenkrupp Materials Processing Europe GmbH acquired its former investee company Thyssen Ros Casares S.A. in southeastern Spain.

KLOECKNER.I strengthens Management team with startup Expert Franziska Leonhardt

kloeckner.i GmbH, the digitalization subsidiary of Klöckner & Co SE, is expanding its management team with Dr. Franziska Leonhardt.